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subject to random censoring. Let Fn(s t) be the bivariate product limit
estimator (PL-estimator) by Campbell and Foldes (1982 Proceedings of the
International Colloquium on Non-parametric Statistical Inference, Budapest
1980 North Holland). In this paper, it was shown that Fn(s t) - F(s,t) =

‘lizlc (s,t) + Ry(s,t), where {{ ((8,t)} 1s 1.1.d. mean zero process and

Rp(s,t) is of the order 0((n~llog n)3/4) a.g. uniformly on compact sets.
n

Tightness of the process {n-lizlci(s’t)} is shown which implies the weak

convergence of the process to a two-dimensional-time Gaussian Process whose
covariance structure is given. Corresponding results are also derived for
the bootstrap estimators. The results can be extended to the multivariate
cases and are extensions of the univariate case of Lo and Singh (1985, Tech.
Report, Dept. of Statistics, Rutgers University). Since Fn (s,t) may not be
a survival function, it is modified to be one. The modified estimator is
closer to the true survival function than the bivariate PL-estimator in
supnorm. ‘
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ABSTRACT
I.1.D. Representations for the Bivariate Product Limit Estimators
and the bootstrap versions. k
by

Shaw-Hwa Lo Jane~Ling Wang
Department of Statistics and Division of Statistics
Rutgers University University of Calif. Davis

Let F(s,t) = P(X > s, Y > t) be the bivariate survival function which is
subject to random censoring. Let E(s,t) be the bivariate product 1limit
estimator (PL- estimator) by Campbell and Foldes (1982, Proceedings of the
International Colloquium on Non—-parametric Statistical Inference, Budapest 1980,

North Holland). In this paper, it was shown that

-~ n

Fn(s,t) ~ F(s,t) = n 1y Ci(s,t) + Rn(s,t), where {Ci(s,t)} is 1.1.d. mean
i=1

zero process and Rn(s,t) is of the order 0((n 1 /

1/2

log n)3 4) a.s. uniformly on

n

I z,(s,t)} is shown which )
=1 1

implies the weak convergence of the process to a two-dimensional-time Gaussian

compact sets. Tightness of the process {n

Process whose covariance structure is given. Corresponding results are also derived
for the bootstrap estimators. The results can be extended to the multivariate
cases and are extensions of the univariate case of Lo & Singh (1985,

Tech. Report, Dept. of Statistics, Rutgers University). Since En(s,t) may not be

a survival function, it is modified to be one. The modified estimator is

closer to the true survival function than the bivariate PL-estimator in

supnorm.
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1. Introduction and Summary.

The one-dimensional product limit estimator (PL-estimator) by Kaplan &

{ Meier (1958) has been treated extensively; e.g. Breslow & Crowley (1974).
X Cs;rgé‘ & Horvath (1983), G1ill (1983) and etc. Recently Lo & Singh (1985);
hereafter abbreviated as [L&S] (1985); represent the PL-process as mean of

1 3/l‘)(a.s.) uniformly

i.1.d. processes with a remainder of the order O((n~ log n)
on a compact interval. The functional law of iterated logarithm (LIL) and the
] weak convergence of the PL-estimator by Breslow & Crowley (1974) are all
direct applications of this i.i.d. representation.
The bivariate (or more generally, the multivariate) random censoring X
model did not appear in the literature until near 1980.
Let (Xg,Yg), i=1,...,n be the lifetime vectors of n pairs of items

0>t).

which are i.i.d. with continuous survival function F(s,t) = P(X0> s, Y
Let (Ci’ Di) be the vector of censoring times of (Xg, Y?) and (Ci'Di) i=1,...,n
are {.1.d. with survival function G(s,t) = P(C > s, D > t). In the bivariate .

random censorship model, one observed (Xi, Yi’ 611, 621), i=1,...,n, where

= 0 = 0 \
. X, mn{xi, ci}, Y, min{Yi, Di},
. § =1 or O according as Xo < C, or XO > C,, and
N 11 i i i i’ :
) §,,= 1 or 0 according as 9 <o or Y9 > p,. \
: 21 £ 1 1771
. It is assumed that (Xg, Yg) and (Ci’ Di) are mutually independent, for { = 1,...,n. E

Let H(s,t) = P(Xi> s, Y1> t) denote the survival function of (Xi, Yi)‘ By

. independence, H(s,t) = F(s,t) G(s,t). Based on the observations (Xi,Y1,611,621)
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one would like to estimate F(s,t).

Situations where estimators of the bivariate survival functions are needed in
the presence of random censorship arise crmmonly in medical follow up for paired
observations (eyes, kidneys, matched pair of treatment and control objects, and
(pre-test, post—test) situations), and in engineering for two-component system
of which the two components are dependent on each other. Another
potential application is the stochastic regression model where both the
independent and dependent variables are subject to random censoring. Campbell
(1981) developed a bivariate self-consistent estimator for discrete times of
deaths or losses. A self-consistent approach for the continuous case has
been suggested by Korwar & Dahiya (1982). Under the condition “4= Dy
Mu;oz (1980a, 1980b) shows how to compute the two-dimensional generalization
of the PL-estimator through algorithms and proves it is the generalized
maximum likelihood estimator and its consistency. Hanley and Parnes (1983)
use the EM algorithm to treat maximum likelihood approaches to bivariate
estimations. Tsai, Leurgans and Crowley (1983) also construct a family of
nonparametric bivariate estimators from a decomposition of the bivariate
survival function and shows their consistency. Campbell & FSldes (1982); here-
after abbreviate as [C&F] (1982); construct two path dependent bivariate
PL-type estimators of the true survival function F(s,t) and establish their
rates of strong uniform consistency on a compact set. Noted that the estimators
may not be survival functions (see section 6 of [C&F] (1982)). Later on

Campbell (1982) shows the weak convergence of these bivariate PL-estimators to a
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Gaussian process. Horvath (1983) generalizes the results of [C&F] (1982) to the

multivariate case and obtains the rate of convergence on the Euclidean space

R,

vit is the purpose of this paper to further investigate the path dependent
bivariate (multivariate) PL-estimator of [C&F](1982) (Hot&%th (1983)). For simplicity,
we shall focus on the bivari%@ case. The multivariate case can be dealt with similarly.
Two path-dependent PL-estimators are introduced in Section 2 of (C&F](1982). We
shall consider only one of them in this paper as the other can be treated with symmetric
argument. We shall estimate F(s,t) based on the fact that F(s,t) = F(s,0)F(t|s),

where F(tls) = P(Yo> t]X0> s).

n
Let N(st)-N(st)=): I(x>s,Y>:)
i=1

ui(s,t) = I(X;< s, Yi> t, 611' 1), 1t =1,2,...,n,

(s,t) = I(X,> s, Yj< t, 62j= 1), j=1,2,...,n,

B3 3
where I(*) is the indicator function. To estimate F(s,0), project all points (Xi’Yi)
vertically onto the X~axis and ignore the Yi values. Let Fn(s,O) be the one-

dimensional PL-estimator of F(s,0) based on (Xi, 611), i=1,...,n. That is ,

/‘
n N(X,,0) a,(s,0)
1:1( —ﬁfgzjﬁyrf ) if s € X(n)

otherwise,

where X(n) = max {Xi}.

R<, 2t 0,

« o iV g o




To estimate F(t|s), project all points (X Yi) for which X1> s horizontally to the

i)
values. Let Fn(tls) be the one-dimensional PL-estimator

line X = s, and ignore the Xi

of F(t]s) based on (Yi’ 621), for which X, > s. That is,

i

n N(s,Yj) Bj(s,t)

T ( ) if t <Y, (s)
) j=1 N(s, Yj)+1 (n)
F (t|s) =

0 otherwise,

where Y(n)(s) = max {Y

: Xi> s}.
1<i<n

i

Our estimator of F(s,t) is ﬁn(s,t) = ﬁn(s,O)én(tls), which is the product
of two one-dimensional PL-estimator. Note that ﬁn(s,t) may not be a survival
function as mentioned earlier.

Let (S,T) be any fixed point in'TPZ such that H(S,T) > 0. In this paper, we
shall consider the behavior of the bivariate PL-process nl/z(gn(s,t) - F(s,t)) on
the compact rectangle [0,S] x [0,T]. The results of [L&S] (1985) are extended to
the mltivariate case. Since the i.i.d. representation of En(s,t) - F(s,t) in
section 3 originates from the corresponding univariate case in [L&S] (1985),
the relevant results are summarized in Section 2.

In Theorem 3.1 the bivariate PL-process gn(s,t) - F(s,t) is

-1 0 -1 3/4
expressed as n =~ L Ci(s,t) plus a remainder of the order O((n “log n)

i=1
(a.s.) uniformly on [0,S] x [0,T], where Ci(s,t) are 1.1.d.

)

random variables. The mean and covariance of the process {Z(s,t)} are given

in Proposition 3.1.

n
L g, (s,t). Tightness of the process {al

1 /

Let Z(s,t) = n 2E(s,t)} is

v v e wy

.
.

oV
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shown on compact sets (Corollary 4.1), and therefore implies the weak

/2,2

convergence of the bivariate PL-process n (Fn(s,t) - F(s,t)) to a

two-dimensional-time Gaussian process. Noted that although the weak
convergence of the bivariate PL-process has been shown in Campbell (1982),
the covariance structure of the limiting Gaussian process is first given in
this paper in Proposition 3.1. The LIL on compact sets also follows directly
which generalizes the results of [C&F) [1982]. The proof of tightness in the
bivariate case is much harder than the univariate case in [L&S) (1985), and
utilizes the tightness results of Bickel & Wichura (1971). 1In Sections 3 and 4
similar results are also obtained for the bootstrap bivariate PL-process (defined
in Section 3), which provide a way to estimate the standard error of ﬁn(s,t)
or to give a confidence interval (band) for F (s,t).

Since the bivariate PL-estimator ﬁn(s,t) may not be a survival function,
a modified estimator En(s,t) which 1is a survival function itself, is constructed

in Section 5. The modified estimator fn(s,t) is shown in Theorem 5.1 to be closer

to the true life distribution than En(s,t).

All the results in Sections 3 to 5 are generalized to the multivariate
case in Section 6.

Some of the lengthly proofs are relegated in the appendices.

While this paper deals only with the multivariate random censoring model,

it is possible to extend the results to the multivariate competing risk models.
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2. Preliminaries

Since the i.i.d. representation of Eq(s,t) - F(s,t) in section 3 originates
from the corresponding univariate case in [L&S] (1985), for readers' convenience
we shall summarize the relevent results of the univariate case in this section.

Let us first define some notations for the univariate case. Let [Xg},
i=1,...,n be 1.1i.d. with continuous survival function F(t) = P(X?) t), and

’ {ci}, {=1,...,n be 1.1.d. with survival function G(t) = P(C,> t), where
C, and XO are independent for each i. In the univariate random censorship model

i i

one observes (Xi,Gi), where X = min(X?,Ci) and 61 = 1 or 0 according as

1
X0 <c oorx?>cC.. Let H(t) = P(X.> t) and H.(t) = P(X] > t and 6 = 1).
1 ¢ 1 7% i 1 i i

For any positive reals x,t, and § taking values 0 or 1, define

o(x,8,t) = - [g(x A t) + H(x) -1I(x < tand § = 1)}, where g(y) = g [H(s)]-zd ﬁl(s)

and x t means the minfmum of x and t. Let Fn(t) be the PL-estimator of F(t),
and A be any point such that F(A) > 0. For t < A, it can be checked without
difficulties that ¢(x,8,t) is a uniform bounded random variable with mean zero and

Cov(¢(X,8,s), ¢(X,8,t)) = -g(sAt).

Next, we shall define the bootstrap sample of the PL-estimator Fn(t). As

mentioned in Efron (1981) we shall adopt the method of drawing random samples

*x _*
(with replacement) (Xi’ 61), i=1,...,n, from the population {(Xi' §), 1 =1,...,n}

i

giving each doublet equal chance (1/n) at each draw and constructing the PL-
~ K x %
estimator Fn (t) using the bootstrap sample (Xi’ 61). The histogram of a large

x A
1/2(1-‘n- Fn) is used to approximate the distribution of

number of values for n
nl/z(Fn- F). Proposition 2.1 provides a first order consistent approximation and

hence shows the validity of the bootstrap method.

.
»
-
-
X
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[}
: Proposition 2.1. If F is continuous, one has the following 1i.i.d
L)
b representations:
N\ - 10
« (a) log F (t) - log F(t) = n -~ LI ¢(X,,8, ,t) + v _(t), where
n i=1 i*i n
; sup ¥ (8] = 0((n l1og n)3/%) a.s.
0<t<a
o4
§ - -1 n g
J (b) F (x) = F(x) =n "F(t) T (X ,,6,,t) + vy (t),
7 n i=1 i'1 n
) =

. where Sup lYn(t)I = 0((n-110g n)3/4) a.s.
- 0<tLA

" ~ A - -1 n X s +*
: (©) F 00 = FO = nTE(O) T 18K, 8,6 = 6(K;,8,0]1 + v (0)

* - * *
where Sup !Yn(t)l = 0((n 1log n)3/6) a.s. (p ), and p stands for !
0<t<A h

P in bootstrap probability.

Proof: (b) and (c) are Theorem 1 of [L&S) (1985), and (a) follows from the

- proof of Theorem 1. d

5 The i.i.d. representations in Proposition 2.1 ((a) and (b)) provide a way '
to study the large sample properties of Fn(t) and its hazard function
- log Fn(t). As a result, weak convergence and law of iterated logarithm

(LIL) follow immediately. Proposition (2.1)(c) shows the feasibility of

. the bootstrap method for estimating the standard error of the PL-estimator

Fn and constructing confidence band for F(t).
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3. I1.1.D. Representations.

In this section, the results of Proposition 2.1 are first extended in Lemma 3.1
to conditionnal survival functions and then in Theorem 3.1 to bivariate survival
functions. For the bivariate case, we shall consider the same bootstrap method as

in Section 2 of drawing random samples (with replacement)

x  x  kx * *
(X Yy, §14> 85¢)s 1 = 1,...,n from the population 2 = {(Xi’ Yo 814 850);

*
i=1,...,n}, giving each element in @ equal chance (1/n) at each draw. The

A* ~
bivariate PL-estimator Fn(s,t) is then constructed as Fn(s,t) but using the -

% *

.k * ~ % ~% ~ %
bootstrap sample {(X , Y, &, , 6,,0}i=1,...,n instead; thus F_(s,t) = F (s,0) Fn(t[s).

We shall adopt the notations of Section 1 for the bivariate censor model,
and define H(t|s) = P(Y > t[X > s), Hj(t][s) = P(Y > t, 6,= 1] X > s),

Hlx(s) = P(X > s, 61= 1). For positive reals x,y,s,t, and 61,6 taking values

2
0 or 1, let

S(x,él,s) = - {g(xAs) + [H(x,O)]—II(x<s and 61= 1)], where g(x) = fg[H(s,O)]_zdﬂlx(s),
and
E(5,6,,8) = =g (yAD) + [H(y|s)) TI(y<t, §,= 1)], where g () = [BH(y|s)]1%dH (y]s).

Let (S,T) be any point with H(S,T) > O.

n * n *
Letm = T I(X,>s),m =L I(X, > s).
S el i S a1 b

Lemma 3.1. The following is true 1f F(s,t) 1s continuous.
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(a) log ;n(tls) - log F(t|s) = m;I Z E (Y 21,t)I(x1> s)

1'1
+ Rn(t[s), where  Sup [Rn(t(s)[ = 0((n-llog 0)3/6) a.s.

0<s<S, 0<t<T

il

~k ~ *-] n *
(b) 1log Fn(tls) - log Fn(t|s) -m f-llis(Yi'

5y DX, > ) -

E (Y, 6, ,0)1(X,>8)] + R'(t|s), where

3/4

* -1 * *
Sup IRn(tls)l = 0((n "log n)”'") a.s. (P ), where P

0<s<S, O<t<T

stands for the bootstrap probability.

Proof: The proof is similar to that of Theorem 1 of [L&S](1985) and is given in

Appendix I. a

Let n(x,,6,,8,,5,t) = E(x,8,,8) + [H(5,00] €_(y,6,,)I(x > s). Define H(t|s),

* * x k k%
Hl(t\s), Hlx(s) similarly by using the bootstrap sample (X ,Y ,61, 62) instead.

Theorem 3.1 If F(s,t) and G(s,0) are continuous, we have

: ~1
(a) log Fn(s,t) - log F(s,t) = n faln(x i,Gli,GZi,s,t) + Rn(s,t) where
Sup ]Rn(s,t)] - 0((n-110g n)3/4) a.s.
0<s<S, 0<t<T
n
(b) F (s t) - F(s,t) = n F(s t) faln(xi’Yi' 611, 621,s,t) + Rn(s,t) where
Sup |Rn (s,t)| = 0((n-llog n)3/4) a.s.
0<s<S, O<t<T
L {o s R :-,} e e ';':':‘:_:‘":':;".'_:".':':‘;-:‘:-":-".-:‘}-":-};-"'.- A T e A
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“& - -1 n *x k% *
\ (¢) F,(s,t) - F (s,t) = n F(s’t)if1[n(x1' Yoo 6940 8345 800D

*
- n(xi, Yi’ 611, 621, s,t)] + Rn(s,t) where
o * - *
- Sup IR (s,t)] = 0((n" 1og n)3/%) a.s. (p").
N 0<s<S, 0<t<T
- Proof of (a):
.. Proposition 2.1(a) and Lemma 3.1 imply that
X log Fn(s,t) - log F(s,t) = [log Fn(s,O) - log F(s,0)] + [log Fn(tls) - log F(t|s)]
. -1 " -1 B
2 =n I E(Xi. 611’5) + L z Es(Yi, 621,t)I(X1> s) + Rnl(s,t), where
" i=1 i=1
Sup ‘Rnl(s,t)‘ = 0((n-llog n)3/4) a.s.
- 0<s<S, 0<t<T
- -1 0
. = n iiln(xi, Yi’ 611, 521,s,t) + Rnl(s,t) + an(s,t), where
: R _(s,0) = {a/m_ - ((5,00]° Y} ol T £ (Y., 6. O0ICK, > s)
; n2*’ s : =1 % i 24 i '
It is easy to see at this stage that, an(s,t) = O(n-llog log n) a.s. for each (s,t).
- To show that it holds uniformly for 0<s<S, O<t<T, we shall apply the functional
; LIL due to Dudley & Philipp (1983 Theorem 4.1).
. Let Z1 = Es(Yi, GZi,t)I(Xi > s), Z1 takes values in D{0,S] x D[0,T] under the
Oy n
) sup norm § I on [0,S] x [0,T], and Sn= L Zj. It 1s clear that Elzll2 < », and
¢ j=1
¥

" .'.J'I'.l..l.
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hence Condition (4.2) of Dudley & Philipp is satisfied.

1/2

Condition (4.1) is satisfied due to the tightness of the process n Sn which

f is shown in Theorem 4.1 of the next section. It then follows from Theorem 4.1

1/2

: of Dudley & Philipp (1983) that IS _/nl = 0((n L10g log n)1/?) a.s.

Also Sup |n/m_ ~ [H(s,O))-l| =0 ((n_llog log n)l/z) a.s. from the LIL for empirical
0<s<S

distribution and the fact that H(S,0) > O.
We have thus shown that
Sup }an(s,t)} = O(n-llog log n) a.s. .

0<s<S, 0<t<T

> (a) follows with Rn(x,t) = Rnl(s,t) + an(s,t).

) Proof of (b) : Let 21- n(xi, Yi’ 611, 621, s,t).

It can be checked easily that Zi is uniformly bounded on [0,S]) x [0,T). Applying

Theorem 4.1 of Dudley & Philipp (1983) once more, we have

4

<

S - n -

- Sup a7t £ n(X,, Y., 8,,,8,,, 5,t)] = 0((n 'log log 2172y a.s.
0<s<S, O<t<T i=1

‘ (b) then follows from (a) and the two-term Taylor's expansion of

‘. F_(s,t) - F(s,t) = exp[log F_(s,t)] - exp(log F(s,t)].

§ Proof of (c): Using Proposition 2.1(c) and Lemma 3.1(b) the proof follows by

3 mimicing the proof of (a) and (b). 0

The following LIL follows from the proof of Theorem 3.1 by applying

Theorem 4.1 of Dudley & Philipp (1983).

o

‘




T e N

Corollary 3.1 1If H(s,t) is continuous, we have

1/2

X (a) Sup [Fn(s,t) ~ F(s,t)]| = 0((n-1log log n)*'%) a.s.
. 0<s<S, OKt<T
4
. ~% - * -
X (b) Sup IFn(s,t) - Fn(s,t)l =0 ((n 1log log n)1/2) a.s.
' 0<s<S, 0<t<T P
Noted that Corollary 3.1 (a) was also obtained in [C&F] (1982) but (b) has
' never been shown to the best of our knowledge.
: Let n(s,t) = n(X,Y, §;, §,,s,t) and I'((s,t), (s7,t7)) = Cov(n(s,t), n(s”,t”)).
The mean and covariance structure of the process {n(s,t)} is given in the next
f proposition.
5 Proposition 3.1 (a) E(n(s,t)) =0
A (b) Assume s € s”,
-
o T'((s,t), (s7,t7))
o
) -
5 = -g(s) + [H(s,00]7T E[£_(Y, §,,0)E(X, §;,8")°1(X > )]
2
2
4
, + [H(s,00) 1/ SH(y]s”) =2 “yd
u , oi(ylsTH(y|8)] “go-(y t7)dH (y]s)
3 - JolRGrle ™ g (v tanCylsT) <[5 Y [u(y]s) HC(y|s) ] Man (y]s7)]
»
J
.4
l
T A RS A0 S S A g L T D e e e e e L
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Proof of (a):

E(n(s,t)) = E[E(X, 8, s) +[H(s,0)] 16 (¥, 6,,0)I(X > )]
) = E(E(X, §,, 8) + [a(s,on‘la”x)s[gs(y, 8y, ©]*P(X > 8)

X = 0, since both expectations above are zero by [L&5](1985).

Proof of (b): Due to the conditional argument in ES(Y,GZ,t), the covariance

] structure of the bivariate case is much more complicated than the univariate case

and is calculated in Appendix II. O

When s = s”, the covariance structure in (b) is much simpler, and we have:

a8 s D

Corollary 3.2. (a) T((s,t), (s,t”)) = -g(s) -gs(t/\t‘)
(b) Var(n(s,t)) = ~{g(s) + g ()], -

Proof: It can be checked easily from the proof in Appendix I1 that the

second term of T((s,t), (s”,t”)) vanishes when s = s”. The rest of the proof

follows immediately. a )
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4. Weak Convergence.

- -1 0
» 8t), n(s,t) =n " L n (s,t),

Let ni(s,t) = n(Xi, Yi‘ $ L

11° 621
—_— —_ * - % * .
ci(S.t) = F(s,t)ni(s.t). g(s,t) = F(s,t)n(s,t) and ni(S.t). n (s,t), ci(S.t). z (s,t)

be their bootstrap counterparts. We shall prove the tightness of the processes

1/2

n H(s,t), n1/2

E(s,t) and their bootstrap counterparts. Weak convergence of the
corresponding processes to Gaussian Processes then follow from the Cramer-Wold device.
For any block E = (3,8"] x (t,t”] define

X(E) = n(s",t”) =~ n(s,t”) - n(s”,t) + n(s,t)
xi(E) = ni(s’,t') ~ ni(s,t‘) - ni(s',t) + ni(s,t).

1 1/2

/12, —, . . - . - . - - n
[n(s”,t”) - n(s,t”) - n(s”,t) + n(s,t)] = n ) Xi(E)

X (E) =n
n 1=1
Lemma 4.1. There exists a positive finite measure W on7?+x7k+ such that

E()X(E)|%) < W(E), for any block E in [0,S] x [0,T].
Proof: The proof is given in Appendix III. 0

Let B = (sl,sz] X (tl,tzl, C = (52,33] b’ (tl,tz] by any two neighboring

blocks in {0,S] x (0,T].

Lemna 4.2. E(|X_(B)]?]X_(C)]%) < 20(BYW(C) + O(n "), where O(n™") 1s independent

f B and C.

Proof: E(lxn(3)12|xn(c)|2)

a2E[(2x,(8)) (2X (C)?)

n
0 2E([L xf

n
(B) + £ X (BX (B)][T X3(C) + I X (C)X (C)])

i=1 i+3 3 i=1 1#3 3
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a2 (nE(x2 (B) ¥ (C)) + n(n-1) E(X2(B))-E(X(C)) +

a(n-1) [E(X(B)X(C))]?}

4 2E(X2(B))'E(X2(C)) + O(n-l), where O(n-l) is independent of B and C

since X(E) is uniformly bounded for any block E,
< 2U(B)*W(C) + O(n"1). u)
We shall use the convergence criteria for multiparameter stochastic processes
by Bickel & Wichura (1971); hereafter abbreviated as [B&W] (1971) to prove

the following tightness theoren.

Theorem 4.1. If G(s,0) and F(s,t) are both continuous, then the processes

(n1/%%(s, )} and {n}?[7"(s,) - T(s,£)]} are both tight on [0,S] x [0,T].

Proof: From Appendix III, W(x,y) = constant 'H(x,O)Hl(O,y) + constant 'Hl(x,y),
where Hl(x,y) = P(X>s, Y>t, 62= 1). The measure W has continuous marginal since
F(s,t) and H(s,0) are both continuous under our assumptions. We shall apply

Theorem 3 of [B&W](1971).

/

Replace W(E) by Wn(E), where wn(E) = 21 ZW(E) + O(R-llz) and o(n"llz) is

independent of the block E in [0,S] x {0,T]. Hence (Xn, wn)ec (2,4), where

C (B,v) is defined on page 1658 of [B&W](1971).

1/

Theorem 3 and the discussion after it then implies that Xn(s,t) = n zﬁ(s,t)is tight.

Noted that although xn(s,t) does not vanish along the lower boundary of
{0,8) x [0,T], it can be modified by subtracting the boundary value of

Xn(s,t) from {it.

L RPN I A :- ':' -:- ':! ".--', ........ et -_.(,.-.._-'.. P T T I S S e P N I T L Tea T T T
e e ¥ T o W o o L T L T e S g e T e T T e e el
Sk ! . ¥ N SN ) \ AJ}J‘}.Z).Q.E AN )
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1

—* —
To show the tightness of n /Z(n (s,t) - n(s,t)), recall that Theorem

3.1(c) implies that bootstrapping Fn(s,t) amounts to drawing random sample
*
{ni(s,t), 1=1,...,n} from the population which assigns equal mass (1/n)

to each of the n functions {nl(s,t), 1 =1,...,n}. For any block E let

* * *
X (E), xn(s) be defined as in X(E), Xn(E) by replacing n by n - n. Following ‘

- the proof of Lemma 4.1 one can show that E(]x*(E)]2)< W(E) + 0((n tlog n)l/z)

where 0((n-1 log n)l/z) is independent of the block E. Lemma 4.2 then implies

* * -
that EC[X (8)1%[x7(C) %) < 2W(BIW(C) + O((n l1og n)1/2
A proof is similar to that of nl/zg(s,t). O 5

) a.s. The rest of the '

The following corollary is immediate.

* Corollary 4.1. Under the assumption that G(s,0) and F(s,t) are continuous, :

the process {nl/zzls,t)} and {nllz(zj(s,t) - Z(s,t)} are both tight on [0,8] x [0,T].

Theorem 4.1 and its Corollary also show that both the bivariate hazard process

and PL-process converge weakly to a two parameter mean zero Gaussian process with
covariance I'((s,t), (s°,t”)) and F(s,t)F(s”.t")I((s,t),(s”,t”))respectively. ‘

~ - -
To show that nllz(Fn - Fn) converges to the same Gausslan process nl/z(Fn- F),

» -5 —_
we only have to show that the finite dimensional distribution nllzlc (si’ti) - g(s,t)),

« o e @ as

for some {(si’ti)’ 1<1<k}, converge to the k~variate Guassian distribution with
- mean zero and dispersion matrix {F(Si'ti)F(Sj’tj)r((si’ti)'(sj'tj))}‘ This follows
directly from the bootstrap central limit theorem for sample means (Bickel and

Freedman (1981) or Singh (1981)). Thus we have proved the following corollary.




.....
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Corollary 4.2. Under the assumption that G(s,0) and F(s,t) are continuous.
n1/ 1/

- -~ N
2(Fn(s,t) - F(s,t)) and n 2(Fn(s,t) - Fn(s,t)) both converge to the two-

parameter Gaussian process with mean zero and covariance F(s,t)F(s”,t”)I((s,t),(s",t")).

We have thus shown that the bootstrap method works under the bivariate random
censorship model, which provides a way to estimate the standard error of Fn(s,t)

or to construct a confidence interval (band) for F(s,t). This is most valuable

since the covariance structure of Fn(s,t) is very complicated as shown

in Proposition 3.1.

5. Modified estimators.

The bivariate PL-estimator gn(s,t) defined in section 1 may not be a survival
function. Examples are given in [C&F] (1982) and Campbell (1981). What happen 1is
that although %n(s,t) is a non-increasing function of t when s is kept fixed, it
may not be nonincreasing function of s when t is kept fixed. We shall modify
%n(s,t) to be a survival function and this modifiled estimator 1is closer to the true
survival function F(s,t) then ;n(s,t) in Supnorm distance.

For any 0<s<{=, 0<t{=, define in(s,t) = Sup Fn(s’,t). Note that fn(s,t) is a step
s s
function and Fn(s,t) = Fn(s,yi) = Sup Fn(xk’yi)' for y1<t<y1+1.

X 9
kS

Proposition 5.1. in(s,t) is a survival function.

Proof: For s”?»s, it is clear that En(s,t) > fn(s’,t).

For t*>t, F (s,t) = Sup F_(s”,t) > Sup F (s”,t”) = F (s°,t"). 0
n rd n - n n
s ?s 8 ?s

For each s, let Xg be the xj such that Fn(s,t) = Fn(xj,t) = Sup Fn(xk,t).

s
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Since Fn(s,t) < fn(s,t) and F(s,t) ? F(xs,t), we obtain the following:

;n(s,t) - F(s,t) ¢ ?n(s,t) - F(s,t) ¢ ;n(xs,t) - F(xs,t).

It then follows immediately that

Proposition 5.2. Sup ]fn(s,t) - F(s,t)] < Sup |§n(s,t) - F(s,t)].
0¢s, t<= 0<g, t{=

1/2

Proposition 5.2 implies that, for any An- o(n PR

A :u;ta\ﬁn(s,t) - F (s,t)| » 0 a.s.

It is not clear yet whether An can be taken at the rate of n1/2. We

1/2 under some strict uniform monotonicity

conjecture that (5.1) hold for Xn- n
of F(s,t), and hence nl/z(in(s,t)-F(s,t)) converges weakly to the same

Gaussian process as nl/z(Fn(s,t) - F(s,t)) does.

6. Generalizations to multivariate survival function.

For multivariate survival function F(sl’SZ""’sk)’ we can define the
multivariate PL-estimator by conditioning argument similar to that of
gn(s,t). See Horvath (1983) page 203 for such extension. Let gn(sl,...,sk)
denote the multivariate PL-estimator so defined. All the results in this

paper can be generalized to Fn(sl""’sk) with similar arguments.
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7. Appendix I: Proof of Lemma 3.1.

Define the following empirical survival functions:

4 N
H (s,t) = n 1 I I(X,>s, Y,> t), hence m_= nH (s,0),
n {=1 i i s n
-1 N 10
Hn(t[s) = m f-ll(xi> s, Y,> ), Hln(tfs) = o f.ll(xi> s, ¥,> t,621= 1).

Let  R_,(t|s) = log F_(t|s) - JS[H (v|s)) 7 am, (y]s),
Ro,(tls) = [SUIH (y[)1 7= [HCy[s)) bt (ys) -

J§tacyls) = B (vl MHCy[)1 72 aH (y]s),

R ,(t]s) =[S (y]9))71= (BGy1)) 7Y d(B) (v]8) - H (yls)).

{Part 1]

Proof of Lemma 3.1(a):

Hy(tls) = P(Y > t, §,= 1|X > s)

0

=ptD e, ¥ en x>, c> )

= - [ G(y|s)dF(y]s), where G(t|s) = P(D> t| C > s).

Hence dH,(t|s) = G(t|s)*dF(t|s).

As a result log F(t|s) = IS[F(Y(S)]_ldF(yls)
= fé [H(Yls)l-ldHl(y[s).

It can be checked easily as in the proof of Theorem 1 of [L&S] (1985) that

..............

T



------------------------------

otz X Yyu 8,00 854 s,t) = ISIH(yls)]-ZIH(yIs) - H (y|s)]dH, (y]s)

+ [E1HCy] )1 HaCH, (v]8) - H (y]8)).

8 A -

- -1
Hence log Fn(tls) log F(t|s) Rnl(tls) +n Xn(Xi, Y., 611,621, 5,t)

+ an(tls) + RnB(tls)'

From (8) of [L&S] (1985), for any 0<s<S, Sup |R_,(t|s)| = O(m_1). a.s.
ocest ™ s

Since ms> m. for any 0<s<S, and o= O(n) a.s., we have

S

Sup IRnl(tls)l = o(n”) a.s. .
0<s<S, 0<t<T

Next, consider an(tls).

IR ,Ctls)] = |[5iB(yls) = B (v]9)12 (0 (y]o)m(y]s)1  an (v ]9

< sup [H(y|s) - B (y|s)|? » inf [H_(y|s)-Hi(y|s)] (7.1)
O<y<T 0<y<T

By triangular inequality,

Sup |H(yl]s) - Hn(yls)l < Sup [H(s,O)]-1[|H(s,y) - Hn(s,y)l + |Hn(s,0) - H(s,0)])
0<s<S, 0<s<S,
0<y<T 0<y<T

/

= 0((n-llog log n)1 2) a.s., from the
law of iterated logarithm for empirical distribution functions
(See Kiefer (1961)). ;

Since both H(y|s) and Hn(yls) are bounded away from zero (a.s.) (7.1)

implies that Sup Ian(t]s)] = O(n-llog log n) a.s.
0<s<S 0<t<T




A =

e"ale e n & B .
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It only remains to prove

Sup IR_,(t]s)]| = 0((n ‘1og 0%y as., (7.2)
0<s<S, O<E<T

and this can be done by similar argument of Lemma 2 of [L&S](1985). We shall
provide the proof when G is also assumed to be continuous (and hence H is continuous).
The argument can be extended to the case when G is arbitrary as the

remark after Lemma 2 of [L&S}(1985).

Let kn = 0((n/log n)1/2), y,= 0, VY = T. Partition the interval [0,T] into

n+l
_ -1 1/2
subintervals [yi, y1+1] i= 1,...,kn, such that H(O,yi) - H(O,yi+1) = 0((n “log n) ),
- _ -1 1/2
and hence both H(s,yi) H(s,yi+1) and H(yils) H(y1+1]s) are 0((n “log n) )

uniformly in s. From now on, all the 0(+) terms hold uniformly for 0<s<S, O<t<T.

ang(tls)l
kn Yi+1. -1 -1 -1 -1
<t |f {[H (yls)) "= (H(y[s$)] "= [H (y,1s)] "+ [B(y,[s)] "[}d(H  (y|s) - H (yls))|
1=0 Vi
noYia -1 -1
vl llfy (M (y 1)1 7 - [HCy,]8)] 7} d(H, (y|s) - Hy(y|s)],
=1 Vi
< 2 max Sup 18 (y1))7h - (HGy])™h - (v (17t + taCy, [)17H

<1< <y<
0<t kn yi y y1+1

+

-1 -1
kn 325<Tllﬂn(t|8)] - [H(t]s)] l§2§<knlﬂln(yi+1's)- Hy(ypp 800 (y )4 (v [s)],

€ A+ B (say)
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To evaluate A, partition [yi, yi+1] into subintervals [yij’ yi(j+1)]’

i = = 1/4 = =

j 1,...,an, where a, 0((n/log n) ), Vi1 S Yy Yy (anﬂ) Yi41» Such that

H(O,y, .) - H(O ) = 0((n—1log n)3/4) and hence both H(s,y,.) - H(s,y )
’ i_‘) :Yi(J.,.l) ’ ’ 1_] ’ i(_]""l)

and Ky, [s) = K(y; ., [s) are 0((a™! 1log n)3/4y.

Consider

Sup (M (y[9))7H= (HCy[)] 7T - (8 (v, 19017+ (ucy, o017
YiYYi4

-1 -1 -1 -1
< max [H ( s)] = [H (y. |s)) ~ - [H(y,.|s)] = + [H(y,|s)])
Tij<anl a0yl e 1508 vyl \

+ 0((n_llog n)3/4), by monotonicity of Hn(yls).

= max |[H (y 4]s) - H(yijlﬁ)][H(yijls)]_2 - [ (v l8) = Hy |s)1[H(y, |9)]72]
1¢i<a_

+ 0((n"llog log n) + O((n"1 log n)3/4) a.s., by LIL for empirical distribution
function and strong law of large number.

< max (RSN G gle) - WOy 191G,y ) - DGy, [8) = By [9)16%Cs,y )|
1<j(an J

/4

+ 0((n—110g n)3 ) a.s.

< max [H(S.T)]—A(Iﬂn(yij|s) - H(yijls) - H (y,|s) + H(yils)l + 2IH(s,yi) - H(s,y )|
1<j<an J

- 4
'[Hn(yils) - H(yils)l} + 0((n 1log n)3/ ) a.s.
y ;.:;"':".‘;' RN :‘:';':-“;':'.‘;';-":»":-\-;-\;\::"_;"'..‘~:-":-":-'.':-;;:_',:'-_:\;.' N e J
A T
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N = me:x (H(S,T)] {IHn(s,yij) - H (s,yy) - H(s,yij) + H(s,y;)|/H(s,0)} + O(n 1log n)

4 1 J<an

A + 0((n-llog n)3/4) a.s., by LIL for empirical distribution function. Use the

' exponential inequality of Lemma 1 in [L&S5](1985) to get the following probability

bound as in Lemma 2 of [L&S](1985):

; max max P(’Hn(s’yij) - Hn(s,yi) - H(s,yij)+ H(s,yi))l > constant 'n-3/4

. 0<i<k_ 1<j<a
n n

3/4

log n )

= O(n_3). It then follows from Bonferroni inequality and the Borel Cantelli

Lemma that A = 0 ((n -1log n)3/4) a.s.

To estimate B, notice that [H,(s,y ) = Hi(s,y;)! < [H(s,y; 1) - H(s,y,)

The rest of the proof is similar to that of A and in fact easler, since one need
N not to partition the interval [yi, yi+1] further as in B. We thus have

B = 0((n_llog n)3/4) 3.5,

(7.2) now follows immediately. 0
-
. (Part 2]
- Proof of Lemma 3.1(b):

* * *

. Define Hn(s,t), Hn(t|s), and Hln(tls) as Hn(s,t), Hn(tls), Hln(tls) by
o
y using the bootstrap sample instead. For example,
- * * -1 0 * * *

Hy (tls) = [m ] "L I(X, >s, Y, >t, §,=1). By the same argument as the proof of
i n s (=1 i i 21
- Lemma 3.1(a) above and Theorem 1 in [L&S) (1985), we have the following bootstrap
N
.

version Sup |log g: (tls) - fg[H:(yls)]_ldH;n(yls)l = O(n-l) a.s. (p*).
0<s<S, 0<t<T

Since Su; anl(s,c)l = O(n-l) a.s., we arrive at the following:
0<s<S, 0<t<T

P R U
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log %:(tls) - log Fn(t|s) - fg{[H:(y[s)]-l - [Hn(yls)]—l}dﬂzn(YIS)
+ f(t,[Hn(yIS)]—ld(HIn(yIS) - Hy (y]s)) + 0(n™1) a.s. (p")
=1+ II + O(n-l) a.s. (p*), where O(n_l) holds uniformly on [0,S]x[0,T].

Mimicing the proof of (a) for R“3(t|s), we have

1 =[Syl - 11 (y]9)) e, (y]s) + 0((n7Mog )%y ais. ")
= J5tH (yls) - Hi(yl®)] (B (y[s)172aH, (y]s) + O™ log n)

3/4

+ 0((n”? log n)”'") a.s. (p*)

- [ (yls) - Ha(yl®) ) [H(y|9)) "2, (y]s) + 0((n " log 03y ais. () (7.3)

The last two equalities follow by similar argument as an(tls) in Lemma 3.1(a).

Mimicing the proof of Lemma 3.l(a) for Rn3(t|s) once more, we have

11 = [Eacy|)) 7 lacn] (vle) - By (v18)) + 0((n 7 1og m)P4) aus. (B (7.4)

Lemma 3.1.(b) now follows from (7.3) and (7.4) since all the 0(°) terms

hold uniformly on [0,8]}x[0,T]. 0
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Appendix II: Proof of Proposition 3.1(b)

Cov(n(s,t), n(s’,t"))

= E(n(s,t)n(s’,t”)), from proposition 3.1(a)

EC[; (X,6,,8) + [H(8,00] 775 (¥, 8,,6)1(X > 8)]*[5(X,8,,87) +

[1(s”,00) e (Y, 65,671 > 87)])

E[C(X,Gl,s)'c(x,él,s’)] + [H(s,O)]-lE[Cs(Y,Gz,t)I(X > s)‘;(x,él,s')]

(B(s*,001 2 E[2(X, §),8)2,.(Y, 85,6 )1(X > s7)] + [H(s,0)H(s",0)] 7}

B[ (Y,85,t)°8..(Y,6,,t7)I(X > 8° V §)]

14+ II + III + IV, where 8"V s = max{s”, s}.

It follows from direct calculation or [L&S] (1985) that I = -g(sA s”) =-g(s),

for s < s”°.

Next we shall show that II1 vanishes for s < s”.

To see this, consider

E[;(X,Gl,s)-;s,(Y,Sz,t’)I(x > 87))

= E{[g(XA s) + (H(X.O)]'II(X <s, §= l)llgs,(M t’) + [n(y|s')1’11(y < t7,8,= 1))

SI(X > s8°)}

(Ey| g (8(8)8 - (YAL)] + EY,GZ|x>s,[s(s>[a(Yls‘)]'lx(w<t', 6, 1)]}+H(s",0)

(U B(yls*)dg,.(9) - |5 [B(y]s)) " an (y]s")}a(s)H(s",0)

0, since dgs,(y) = [H(y[s‘)]-zdﬂl(y|s‘).
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Hence 1II = 0, for s < s”.

Since 1I can not be simplied, we shall leave it as it is. Noted that {1if
s»8”, by symmetric argument, 1I = O.
It remains to evaluate IV.

IV = [H(s,0)H(s”,0)] -1E[cs(Y,62,t)cs,(Y,Gz,c‘)I(x > §°Vs))

- [u(s,O)u(s',0)1'1u(s‘,0)5Y|x>s,{[gs(YAc) + [(y|8)} t1(yer, 8y=1)]e
[g,.(YAL) + [H(Y|s"))  1(¥ce”, 6,= 1))}
- u(s,O)1'1{EY|x>s,[gs(YA:)gs,(vAc')1 + zylx>s,(gs(YAc)(a(Y|s')l‘lz(y<c',52-1>1

* EY|x>s‘[3s‘(“t')[“(”s)l_ll(“t’ §= 1] + Ey|x>s»[[H(Y|S)H(YIS')I-II(Y<tAt’,6 -1))

= (H(s,0) ] {1V, + vy + TV, + IV4].

By integration by parts,

v, - ISH(yIS’) g - (yA t‘)[H(yIS)l-deI(yls) + I; H(yls’)'gs(Y/Nt)[u(yls‘))'zdﬂl(yls‘),

=IV ., + IV
a a

1 2°

It is easy to show that,

Iy = - f; ss(Y/\t)[H(yIS')1°ldul(Y|s') --,,,

e = - [§ 8- (1At )[H(y|8)] "ah (y|s"),

tAt”

Vg = - [g" " [HCy|9)u(y|s*)) 7T aiy(y]s®).

Hence IV = [H(S.O)]-lllval + IV, + V4], for s < s”.

The proof is now completed. a

.............
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9. Appendix III: Proof of Lemma 4.1.

Since n(s,t) is uniformly bounded random variables for (s,t) in [0,S5])x[0,T),
let M be this uniform upper bound.
Let € = H(S,T) > O.

E([X(E)}?) < 4M E|X(E)]

= 4M E[n(s,t) - n(s,t”) - n(s”,t) + n(s",t”)|

= M E|[H(s,0)] T L(X08) [£,(Y,8,,8) = £(Y, 6,,t)]- [H(s*,0)] 1 1(X>s7)
[gs‘(Y) szt) = gs‘(Y;620t‘)]|

< 4 E[[H(5,0)] T I(08) [g,(YVAL) = g (YAL)] - [H(s”,00] 1105 ) (g - (YA )
- g, (YA T)]| + 4M E|[H(s,0)) T I(X>s) I(tev<e”, 6, 1)[H(Y|s))™L

- [H(5”,0)] " 1(0 87 1(tcv<t”, 6= 1)« (H(Y[87)]

= 4M (I + II), where I, II stands for the first & second expectation

respectively. (9.1)

Let H (s,t) = H,(t]s)*H(s,0) = P(X > s, Y > t, 6, 1). Let's consider I first.

YA

AL tH(s, 1 A (s,y) - 1087 [E7 Epucs )1 2am (s, y) ]

I = E[I(x>s)+]

< E[JYA L. (H(s,y)172aH (s, ) - JINEL (H(s”,y)1 2 (5%, y) |

+ E|1(s<Xss”)[ A 5L [H(s,y)) "2l (5,y) ]
<EIf§ 2 £ (1808, )17 (HCs" 1)) Dl (s, 3) | + B[N EL (uCs”,y)172acH,(s,) = H (s%,y))

. - 4

45 oy 3 T o,y

o«

NS v v

oy . »
(NN AARD

., .
e
ISR




INt

+ E|I(8<X<s”) j,m .

. (H(s,y)] 7 dH (s,)]

: -1, 4 I+ I (9.2)

1, < 27 B|JIA L. (H(s,y) - H(s”,y)] B (s,Y)]

! ¢ 2674 [H(s,0) - H(s*,0)]°E|H (5,YAL) = H (s, YAL)]
< 2¢7% [H(s,0) - H(s*,0)]°E[H(0,¥At) = H (0, YAL)]

¢ 267 [u(s,0) - H(s",0)] [R(0,t) = H (0,t")] (9.3)

I, < e-zslnl(s,Y/\ t) - Hl(s‘.YAt) - Hl(s,Y/\t’) + Hl(s" YA t7)]

< s-z[Hl(s,:) - H(s”,t) - Hi(s,t7) + Hy(s”,t)]. (9.4)
I, < e-ZE|I(s<X<s‘)' [Hl(s,Y/\c) - Hl(s,Y/\t‘)]l
< e2E[1(s<Xes”)e [H,(0,¥AE) - B (0,YAED)]]

< €72(H(s,0) - H(s",0)][H(0,8) = H)(0,t)] (9.5)

Next, consider II

I1 = E|I(tevst”, §,= 1) [TOs) [H(s, 1)) "1 1(X>s”)[H(s*, )] 1]

< C-ZE|I(t<Y<t', §,= 1)« [H(s",Y) - H(s,Y)]| + c'ZElI(t<Y<t‘, §,= 1)I(s<X<s”)|

WA N '_'-'
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< € 2[H(s,0) - H(s",0)]*H (0,t) - B (0,e7)] + e‘z[nl(s,c) - H (s,t7) = 1 (s",0)

+ H (s,t7)] (9.6)

For any x, ¥y

let W(x,y) = W((x,=)x(y,=))

= 4M [2e7°

+ 2672 [H(x, 001, (0,y) + 8ME™2H, (x,¥) -
It now follows from (9.1) to (9.6) that,

EC[X(E)]1%) < W(E). |

Noted that we have used the same notation W for both the measure and the survival

function.
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